Confined Carbon Mediating Dehydroaromatization of Methane over Mo/ZSM‐5
نویسندگان
چکیده
Non-oxidative dehydroaromatization of methane (MDA) is a promising catalytic process for direct valorization of natural gas to liquid hydrocarbons. The application of this reaction in practical technology is hindered by a lack of understanding about the mechanism and nature of the active sites in benchmark zeolite-based Mo/ZSM-5 catalysts, which precludes the solution of problems such as rapid catalyst deactivation. By applying spectroscopy and microscopy, it is shown that the active centers in Mo/ZSM-5 are partially reduced single-atom Mo sites stabilized by the zeolite framework. By combining a pulse reaction technique with isotope labeling of methane, MDA is shown to be governed by a hydrocarbon pool mechanism in which benzene is derived from secondary reactions of confined polyaromatic carbon species with the initial products of methane activation.
منابع مشابه
Molybdenum Speciation and its Impact on Catalytic Activity during Methane Dehydroaromatization in Zeolite ZSM‐5 as Revealed by Operando X‐Ray Methods
Combined high-resolution fluorescence detection X-ray absorption near-edge spectroscopy, X-ray diffraction, and X-ray emission spectroscopy have been employed under operando conditions to obtain detailed new insight into the nature of the Mo species on zeolite ZSM-5 during methane dehydroaromatization. The results show that isolated Mo-oxo species present after calcination are converted by CH4 ...
متن کاملSelective Coke Combustion by Oxygen Pulsing During Mo/ZSM‐5‐Catalyzed Methane Dehydroaromatization
Non-oxidative methane dehydroaromatization is a promising reaction to directly convert natural gas into aromatic hydrocarbons and hydrogen. Commercialization of this technology is hampered by rapid catalyst deactivation because of coking. A novel approach is presented involving selective oxidation of coke during methane dehydroaromatization at 700 °C. Periodic pulsing of oxygen into the methane...
متن کاملDesigning Metal-exchanged Zeolites for Non-oxidative Methane Upgrade to Chemicals
Utilization of methane to produce chemicals has become attractive due to significantly reduced prices for methane gained from recent development in natural gas recovery. However, the lack of suitable catalysts for methane conversion (other than steam reforming) hinders its advances. While intensive research has been conducted on oxidative methane upgrading over decades, the carbon selectivity a...
متن کاملNon-oxidative conversion of methane to aromatics over modified zeolite catalysts by transitional metals
The activity of different transitional metals over modified H-ZSM-5 catalysts for methane conversion to aromatics was compared. The first group of catalysts was Mo-impregnated H-ZSM-5 zeolites with 1, 3 and 6 wt% of Mo. The second group was M(3 wt%)- impregnated H-ZSM-5 (M: Ag, Cd, Cr, Mo, Zn and Mn). The catalytic activity of the first group was investigated at 600, 700 and 800 °C and gas hour...
متن کاملStructure of Mo2Cx and Mo4Cx Molybdenum Carbide Nanoparticles and Their Anchoring Sites on ZSM‐5 Zeolites
Mo carbide nanoparticles supported on ZSM-5 zeolites are promising catalysts for methane dehydroaromatization. For this and other applications, it is important to identify the structure and anchoring sites of Mo carbide nanoparticles. In this work, structures of Mo2Cx (x = 1, 2, 3, 4, and 6) and Mo4Cx (x = 2, 4, 6, and 8) nanoparticles are identified using a genetic algorithm with density funct...
متن کامل